A feature selection-based framework for human activity recognition using wearable multimodal sensors

نویسندگان

  • Mi Zhang
  • Alexander A. Sawchuk
چکیده

Human activity recognition is important for many applications. This paper describes a human activity recognition framework based on feature selection techniques. The objective is to identify the most important features to recognize human activities. We first design a set of new features (called physical features) based on the physical parameters of human motion to augment the commonly used statistical features. To systematically analyze the impact of the physical features on the performance of the recognition system, a single-layer feature selection framework is developed. Experimental results indicate that physical features are always among the top features selected by different feature selection methods and the recognition accuracy is generally improved to 90%, or 8% better than when only statistical features are used. Moreover, we show that the performance is further improved by 3.8% by extending the single-layer framework to a multi-layer framework which takes advantage of the inherent structure of human activities and performs feature selection and classification in a hierarchical manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition

Human activity recognition (HAR) tasks have traditionally been solved using engineered features obtained by heuristic processes. Current research suggests that deep convolutional neural networks are suited to automate feature extraction from raw sensor inputs. However, human activities are made of complex sequences of motor movements, and capturing this temporal dynamics is fundamental for succ...

متن کامل

A novel feature selection technique for improving wearable activity recognition

Last technological advances in wearable sensors and machine learning are allowing for a new generation of human monitoring techniques, especially devised for the analysis of biomechanics and activity patterns. In this paper, a novel technique to improve the identification of daily physical activity is presented. Taking into account the importance of data featuring and the selection of the most ...

متن کامل

Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors

Getting a good feature representation of data is paramount for Human Activity Recognition (HAR) using wearable sensors. An increasing number of feature learning approaches-in particular deep-learning based-have been proposed to extract an effective feature representation by analyzing large amounts of data. However, getting an objective interpretation of their performances faces two problems: th...

متن کامل

Seamless Tracing of Human Behavior Using Complementary Wearable and House-Embedded Sensors

This paper presents a multimodal system for seamless surveillance of elderly people in their living environment. The system uses simultaneously a wearable sensor network for each individual and premise-embedded sensors specific for each environment. The paper demonstrates the benefits of using complementary information from two types of mobility sensors: visual flow-based image analysis and an ...

متن کامل

Application of a novel feature selector for human activity recognition based on inertial monitored data

The last technological advances in wearable sensors and machine learning are allowing for a new generation of human monitoring techniques, with an especial interest for the analysis of human biomechanics and activity recognition. In this paper, an application of intelligent systems to solve the problem of daily physical activity recognition is presented. Taking into account the importance of da...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011