A feature selection-based framework for human activity recognition using wearable multimodal sensors
نویسندگان
چکیده
Human activity recognition is important for many applications. This paper describes a human activity recognition framework based on feature selection techniques. The objective is to identify the most important features to recognize human activities. We first design a set of new features (called physical features) based on the physical parameters of human motion to augment the commonly used statistical features. To systematically analyze the impact of the physical features on the performance of the recognition system, a single-layer feature selection framework is developed. Experimental results indicate that physical features are always among the top features selected by different feature selection methods and the recognition accuracy is generally improved to 90%, or 8% better than when only statistical features are used. Moreover, we show that the performance is further improved by 3.8% by extending the single-layer framework to a multi-layer framework which takes advantage of the inherent structure of human activities and performs feature selection and classification in a hierarchical manner.
منابع مشابه
Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition
Human activity recognition (HAR) tasks have traditionally been solved using engineered features obtained by heuristic processes. Current research suggests that deep convolutional neural networks are suited to automate feature extraction from raw sensor inputs. However, human activities are made of complex sequences of motor movements, and capturing this temporal dynamics is fundamental for succ...
متن کاملA novel feature selection technique for improving wearable activity recognition
Last technological advances in wearable sensors and machine learning are allowing for a new generation of human monitoring techniques, especially devised for the analysis of biomechanics and activity patterns. In this paper, a novel technique to improve the identification of daily physical activity is presented. Taking into account the importance of data featuring and the selection of the most ...
متن کاملComparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors
Getting a good feature representation of data is paramount for Human Activity Recognition (HAR) using wearable sensors. An increasing number of feature learning approaches-in particular deep-learning based-have been proposed to extract an effective feature representation by analyzing large amounts of data. However, getting an objective interpretation of their performances faces two problems: th...
متن کاملSeamless Tracing of Human Behavior Using Complementary Wearable and House-Embedded Sensors
This paper presents a multimodal system for seamless surveillance of elderly people in their living environment. The system uses simultaneously a wearable sensor network for each individual and premise-embedded sensors specific for each environment. The paper demonstrates the benefits of using complementary information from two types of mobility sensors: visual flow-based image analysis and an ...
متن کاملApplication of a novel feature selector for human activity recognition based on inertial monitored data
The last technological advances in wearable sensors and machine learning are allowing for a new generation of human monitoring techniques, with an especial interest for the analysis of human biomechanics and activity recognition. In this paper, an application of intelligent systems to solve the problem of daily physical activity recognition is presented. Taking into account the importance of da...
متن کامل